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How Domain-Driven Design 
Can Boost Legacy Systems  
Modernization 
Legacy modernization initiatives struggle to maintain business alignment when 
business and IT leaders treat it as merely a technology refresh exercise – even 
as COVID-19 accelerates such modernization demands. By transforming 
legacy systems into a set of services and applications based on domain-driven 
design principles, business can be a fully participating partner throughout the 
modernization journey.

Executive Summary 
Heraclitus, the Greek philosopher, was indeed prophetic 
when he said that change is the only constant in life. 
This principle applies particularly well to IT: When almost 
everything is in flux, how long can enterprise backbone 
applications such as airline systems, core banking 
platforms, trading platforms or billing applications remain 

rooted in legacy architectures? Not long, the COVID-19 
crisis notwithstanding. 

Industry estimates indicate that the global market size  
for modernization services will reach $24.8 billion by 2024, 
from $11.4 billion in 2019.1 Over 100 billion lines of code 
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still exist in legacy technologies such as COBOL,2 
indicating the mammoth volume of work ahead.

Legacy applications, in general, are monolithic by 
nature, support critical business processes and 
are hardened over a period of time – often with 
little updated documentation. Thus, modernizing 
these applications is quite challenging.3 Another 
reason it is such a hurdle: Modernization is not just a 
technology exercise; immersive user experience and 
redefining business processes to leverage modern 
digital capabilities are critically important concerns. 

The technology industry has developed various 
design patterns to solve technological problems, 
such as better organizing code. However, today’s 
modernization needs are more demanding, 

which makes business cooperation of paramount 
importance. Domain-driven design (DDD) offers 
a conducive bridge between the technology and 
business sides of the organization via the creation 
of a ubiquitous language that is understandable by 
both domain experts and technologists. 

This white paper is based on our work in 
modernizing a core legacy application for Kvaerner, 
a leading Norway-based provider of engineering, 
procurement and construction (EPC) services. (See 
“Modernizing Legacy Applications at Kvaerner,” 
next page.) We will show how DDD principles4 can 
be used for gradual (progressive) modernization 
of a monolithic system into sets of domain-centric 
services and persona-driven apps.
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Modernizing Legacy 
Applications at Kvaerner
Kvaerner is a multinational heavy engineering company engaged in the fabrication of 
construction materials. The Norway-based company has an in-house application, built over 
many years, that relies on legacy technologies to handle the core business processes of 
materials management, construction management and completion verification. With rapid 
externalization and the need for collaboration, Kvaerner wanted to modernize progressively 
(part by part) without affecting existing projects which are managed via the legacy system.

Working with Kvaerner, we looked at the legacy monolithic system, its business processes 
and user personas involved, and arranged them into a set of bounded contexts. This 
resulted in the collection of related domain services (a microservice exposing a particular 
domain feature). We then created persona-based apps via a microservices architecture – 
while maintaining a strong connection with the business side. 

To illustrate this, we highlight the work conducted to transform the company’s material 
order and warehouse environment. This legacy system provides the capability to order 
material from a warehouse for the construction of heavy objects as part of planned  
work orders. 

As legacy systems are typically monolithic, underlying repositories hold business logic. 
They reference other domain objects directly, which results in a tightly coupled architecture. 
This white paper demonstrates how to modernize the material order function within the 
warehouse domain in a legacy system that is tightly coupled with associated domains and 
also how to form a set of cohesive domain-centric services independent of other capabilities. 
Transformed modules in the resulting new ecosystem, however, must still coexist with  
old ones, as described below. This paper also examines how this newly formed set of domain 
services can be aggregated to deliver end-to-end business capabilities to specific  
user personas.

Quick Take
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Envisioning progressive modernization
Progressive modernization with domain-centricity 
provides a framework to transform a legacy  
system part by part, by strangling the monolith5 

(see Figure 1). This will ensure incremental business 
value realization and allow for any course corrections 
during the modernization journey. 
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Strangling the monolith

Figure 1
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Progressive modernization: Implementing the concept
We propose a modernization framework based on 
user personas and DDD concepts (see Figure 2). 
In the world of DDD, the domains are contextualized 

further to “bounded context” to provide an 
unambiguous, unique functional understanding. 
This is particularly necessary when the domains are 

Cognizant 20-20 Insights

A framework for modernization

Figure 2
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large and complex. Decomposition to manageable 
parts via bounded context also helps to simplify and 
yet retain the business context. The framework steps 
are as follows: 

1. Decompose domain.
2. Identify user personas.
3. Design bounded contexts.
4. Form domain services.
5. Weave persona apps.
6. Synchronize with rest of legacy.
7. Retire transformed domain from legacy.

STEP 1: Decompose domain 
Grouping business capabilities by domains helps 
to visualize legacy apps as a collection of discrete 
capabilities. Sourcing, financial planning and 

warehousing could be different domains for a 
manufacturing plant. The domains can be analyzed as: 

 ❙ Core: Provides key differentiating capability for 
running the business.

 ❙ Supporting: Ancillary capabilities to support 
core business capabilities.

 ❙ Foundational: Capabilities that are foundational 
(e.g., enterprise integration, monitoring, sending 
notifications, etc.). 

Gaining a holistic view of current capabilities split by 
domains is the first step in modernization. In Kvaerner, 
we considered material order and warehousing as the 
first set of domains to transform. Figure 3 depicts a 
simplified process view, demonstrating dependencies 
with peripheral domains.
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Domains at a glance

Figure 3
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The business features work order and warehouse 
are linked with material order. The following sections 
articulate how to form a persona app for material 
order, while maintaining the links between the 
transformed app and dependent modules in a 
legacy application.

STEP 2: Identify user personas 
User personas – or representational user groups –  
infuse the domain model with real-world context. 
Applications address multiple user personas. Having 
a clear view of how each of the personas interact 
with application and for what purpose will help 
developers understand the domain in the dynamic 
usage context. 

Chief personas involved in using the application are 
foreman, warehouse operator and logistics operator:

 ❙ Foreman: Deals with construction. Understands 
upcoming material requirements from work order 
and places order to warehouse. The foreman’s  
role will be the users of a material order application.  
Place order will issue an entry into a new system 
repository and trigger changes in the legacy 
system so the warehouse operator is notified 
about it. (New and legacy interactions to be 
covered in the synchronization section in detail.)

 ❙ Warehouse operator: Is responsible for 
packaging ordered materials for construction and 
changing material order status to packaged. Also, 
this persona receives materials from vendors and 
maintains inventory.

 ❙ Logistics operator: Receives the package from 
the warehouse and delivers it to the foreman. 
Once the package is received, the foreman 
updates material order status as completed.

STEP 3: Design bounded contexts
A bounded context is part of the tactical phase of 
DDD. Our investigation revealed that a material 
order in Kvaerner is a combination of two bounded 
contexts – order management and order forecasting. 
We aggregated the associated domain entities  
and services based on identified bounded contexts.  
For example, order management has the  
following entities: 

 ❙ Stock.
 ❙ Order and order item.

Forecasting order consists of:
 ❙ Order forecast.

A bounded context is the boundary within domains 
applying the set of domain entities. Domain services 
act upon entities as mentioned above. It also has 
dependencies on entities from peripheral domains, 
e.g., article, parcel, location, etc.

STEP 4: Form domain services
DDD has two phases – strategic and tactical. 
Strategic defines the holistic structure of a system 
focused on business capability, whereas tactical 
provides the set of design patterns useful to creating 
domain models. Design patterns such as entities, 
aggregates and domain services help design loosely 
coupled and cohesive microservices.

Once the bounded contexts are fully determined, 
it is easy to derive domain services that deliver the 
discrete functionality (or services) in an independent 
fashion that constitutes a microservices architecture. 
These are loosely coupled and independently 
deployable, providing the flexibility to evolve in an 
agile fashion. 

Implementation of the domain service can be based 
on the microservice design paradigm. 
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Microservices in this context: Order management 
and order forecasting. In each bounded context, the 
following services are required:

 ❙ Order management: 
 > Place order.
 > Update order.
 > Cancel order.

 ❙ Order forecast:
 > Forecast order.

These services are derived based on the capabilities 
needed, master data and integration needs. 

STEP 5: Weave persona apps
In this step, we look at the user personas from Step 2  
and microservices in Step 4. We then weave the 

microservices so the team can deliver the business 
capability that the user persona needs. 

An attendant challenge with microservices is the 
proliferation of a number of such services that are 
developed over a period of time. In addition, from a 
user experience perspective, several microservices 
need to be tied together to deliver some meaningful 
information to end users or personas. To overcome 
these challenges, we propose the use of the back 
end for front end (BFF) pattern (see Figure 4). 

From a user experience perspective, the persona-
based application will need information across 
the transforming and supporting domains. Our 
scenario’s material order and warehouse examples 
includes transforming domains; article and locations 
are supporting domains. Supporting domains 
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Back end for front end
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remain in the legacy system. To elegantly handle 
this, we used a pseudo-service which acts as a quick 
wrapper over legacy domain capabilities. These 
pseudo-services will eventually be converted into 
real microservices according to Kvaerner’s business 
transformation plan.

STEP 6: Synchronize with rest of legacy
A transformed domain is a strangled part of the 
overall system. Other business capabilities already 
have established dependencies on transformed 
capabilities, and vice versa. In principle, we should 
not change legacy implementation to avoid 
disturbing other working modules and existing 
integrations. The following considerations are 
important from the synchronization aspect:

 ❙ Keep the legacy data model as is to avoid 
impacting other non-transforming domain 
modules.

 ❙ Establish synchronization between the legacy and 
new data model.

 ❙ Use technologies to synchronize immediately to 
avoid dealing with stale data and conflicts in both 
legacy and new systems.

STEP 7: Retire
As the modernization program proceeds and data 
is owned by the new application, the old data model 
and application features will be redundant to some 
degree. The corresponding legacy modules can 
be progressively retired. Optimally, we can retire 
legacy modules by abandoning or disabling their 
usage without trying to remove or decommission 
corresponding artifacts from the legacy system. This 
zero-touch strategy for the legacy system will reduce 
the risk of impacting its usage for other modules as 
well as reduce development costs.

Careful attention must be paid to undocumented 
system interfaces. The applicable regulatory 
requirements must be considered, as data may be 
needed for many years. Use of appropriate storage 
technology will help reduce the cost of maintaining 
legacy data.

 
Looking ahead: Progressive modernization 
Enterprises should employ progressive 
modernization techniques to realize continuous 
business value. By applying proven modernization 
frameworks, risks can be mitigated. Aligning with 
business stakeholders in a continual fashion is 
important to ensure optimized outcomes from 
business and IT toward unified goals as well as 
establishing robust relationships across customers 
and partners.

Goals must be set beyond modernization, toward 
digital ends. Enterprises should offer new services 
using their increased ability for monitoring, 

exposing new services and data monetization. This 
opportunity should be leveraged to further the focus 
on transformation of their internal operational and 
developmental culture to Agile, AI and tool-driven 
methods.

Avoiding a predominantly server/back-end 
focus, enterprises should look to recast their user 
experience as part of all modernization initiatives. 
Particular attention must be paid to cyber-security6 
as microservices and decomposition often expand 
the number of software artifacts, thereby increasing 
the risk of exposure.  
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